THE ACHIEVABLE PERFORMANCE OF CONVEX DEMIXING MICHAEL B. MCCOY AND JOEL A. TROPP The achievable performance of convex demixing
نویسندگان
چکیده
Demixing is the problem of identifying multiple structured signals from a superimposed, undersampled, and noisy observation. This work analyzes a general framework, based on convex optimization, for solving demixing problems. When the constituent signals follow a generic incoherence model, this analysis leads to precise recovery guarantees. These results admit an attractive interpretation: each signal possesses an intrinsic degrees-of-freedom parameter, and demixing can succeed if and only if the dimension of the observation exceeds the total degrees of freedom present in the observation.
منابع مشابه
The achievable performance of convex demixing
Demixing is the problem of identifying multiple structured signals from a superimposed, undersampled, and noisy observation. This work analyzes a general framework, based on convex optimization, for solving demixing problems. When the constituent signals follow a generic incoherence model, this analysis leads to precise recovery guarantees. These results admit an attractive interpretation: each...
متن کاملSharp Recovery Bounds for Convex Demixing, with Applications
Demixing refers to the challenge of identifying two structured signals given only the sum of the two signals and prior information about their structures. Examples include the problem of separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis, and the problem of decomposing an observed matrix into a low-rank matrix plus a sparse m...
متن کاملRobust computation of linear models, or How to find a needle in a haystack
Consider a dataset of vector-valued observations that consists of a modest number of noisy inliers, which are explained well by a low-dimensional subspace, along with a large number of outliers, which have no linear structure. This work describes a convex optimization problem, called reaper, that can reliably fit a low-dimensional model to this type of data. The paper provides an efficient algo...
متن کاملFrom Steiner Formulas for Cones to Concentration of Intrinsic Volumes
The intrinsic volumes of a convex cone are geometric functionals that return basic structural information about the cone. Recent research has demonstrated that conic intrinsic volumes are valuable for understanding the behavior of random convex optimization problems. This paper develops a systematic technique for studying conic intrinsic volumes using methods from probability. At the heart of t...
متن کاملRobust Computation of Linear Models by Convex Relaxation
Consider a dataset of vector-valued observations that consists of noisy inliers, which are explained well by a low-dimensional subspace, along with some number of outliers. This work describes a convex optimization problem, called REAPER, that can reliably fit a low-dimensional model to this type of data. This approach parameterizes linear subspaces using orthogonal projectors, and it uses a re...
متن کامل